A tensile, flexural model for the initiation of subduction
نویسندگان
چکیده
S U M M A R Y We argue that subduction may be initiated at passive continental margins without shortening the lithosphere. Overcoming the lithosphere’s high compressive strength requires special circumstances, and these make it difficult to explain the nearly complete recycling of old sea-floor. Instead, we present a model that predicts tensile decoupling of the continental and oceanic lithosphere, passive rifting, and foundering of the seafloor beneath material welling up in the rift. This occurs because the lithosphere in a new ocean basin establishes mechanical continuity with the continent at a depth comparable to mid-ocean ridges. Later subsidence at the margin is therefore inhibited by flexure, which implies shear stresses that promote fault slip and tensile stresses necessary to balance the component of the plate’s weight directed down the margin slope. We show that this tension can more than offset ridge push. In our model, an important additional tension arises from basal shear tractions resisting the plate’s motion away from the mid-ocean ridge, although these tractions cannot be evaluated with confidence. Slip on a high-angle fault decouples the oceanic and continental lithosphere when shear stresses arising from flexure and the applied tension exceed the lithosphere’s shear strength under these loads. A passive rift then forms, allowing a mantle column to rise to the height of mid-ocean ridges, over 3 km above the old seafloor, and flow onto the surface in a gravity current. This load flexes the plate downwards, which enhances the flow and lets the old oceanic lithosphere founder. This model is consistent with the presence of oceanic material in continental forearcs and the youth of ophiolites when they are obducted, as both might be explained by rifting a margin and underthrusting the juvenile crust formed there. Boninites in ophiolite complexes and tectonites at their bases show depleted and hydrated geochemistries consistent with the melting of rifted mantle lithosphere that receives volatiles from foundering oceanic crust.
منابع مشابه
An investigation into finding the optimum combination for dental restorations
The aim of the study was to find the optimum combination of materials and thicknesses to provide a tough, damage resistant multi-layer system with numerical methods to restore the damaged teeth. Extended Finite Element Method (XFEM) was used to assess the critical loads for the onset of damage modes such as radial cracks and plastic deformation in dental prostheses, which consist of a brittle o...
متن کاملEvaluation of Soldered Joints of Two Base Metal Ceramic Alloys: Supercast and Minalux
Background: Different soldering techniques have a variety of applications in dentistry. One of the most important uses of soldering is to join multiple-unit fixed partial dentures together. In this Study, two base metal alloys (Supercast and Minalux) were soldered and their tensile, compressive and flexural strengths were measured and compared to each other. Materials and methods: In this ...
متن کاملبررسی رفتار قاب بتن مسلح با استفاده از تحلیل غیرخطی به روش آسیبدیده پلاستیک در برابر بارهای ناشی از انفجار
Explosion occurs mainly due to unforeseen factors, such as terrorist attacks or performance disruption leading to explosion in facilities and infrastructure caused by fatigue and non-compliance with regulations. Considering the special status of reinforced concrete structures in the construction industry and the extensive usage of the lateral load-bearing system of flexural frames, this researc...
متن کاملEco-friendly Self-curing Concrete Incorporated with Polyethylene Glycol as Self-curing Agent (RESEARCH NOTE)
Today concrete is most generally utilized development material in the world due to its strength and sturdiness properties. To attain good strength, curing of concrete is important so we introduce the concept of self-curing concrete rather than immersion or sprinkle curing to avoid water scarcity. It was observed that water solvent polymers can be utilized as a self-curing agent, i.e. polyethyle...
متن کاملExperimental Study of Mechanical Stabilization impact on Improving Compressive, Tensile and Flexural Strength of Adobe
Iran is one of the oldest countries in the world benefiting from adobe-based architecture; a method which has long been forgotten in the contemporary architecture of country. Considering the important role of Earth Blocks such as adobe in the world’s contemporary architecture and the wealth of Iranian adobe-based monuments, it is necessary to continue contemplating on ways to optimize adobe to ...
متن کامل